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In all Monte Carlo simulations it is necessary to generate random or pseudo-random numbers.  The 
following statement will generate a random number drawn from a uniform distribution between 0 and 
1.

0.3957188605

This tutorial will attempt to numerically evaluate an integral for which the exact solution is easily 
obtained.  This approach has been taken purposely so that we can confirm that our numerical 
techniques are reliable.  The function that we will integrate is a simple polynomial.  Below the function 
is plotted on the interval x = 0..1 and the exact value of the integral is evaluated over the same interval.
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The f-average method requires that we repeatedly generate x_i random numbers (n times) uniformly 
distributed between the integration interval (0 to 1 in this example).  For each x_i we calculate the 
corresponding f(x_i) and sum all of these to find f_total.  f_average is obtained from f_average = 
f_total/n.  An estimate of the integral is given by the integration interval (b-a)*f_average.  In the plot 
below, we show each of the f(x_i) and f_average which is our estimate of the integral.  The square area 
below the red line is approximately equal to the area beneath the blue curve which is the integral that 
we're trying to evaluate.  
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If you don't need to keep track of the individual x_i and f(x_i) the calculation can be done more 
compactly and the loop will complete in a shorter time.
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Now we will numerically approximate the integral using n = 1000 one hundred times and plot the 
resulting distribution of our determination of the integral.  The distribution is expected to be Gaussian.  
WARNING: Depending on the machine that your working with, this chunk of could could take some 
time to fully execute!

"23:58"
"26:42"
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The width of the distribution can be calculated from the standard deviation of the list of 100 
approximations of the integral and is an estimate in the uncertainty of our determination of the definite 
integral.

0.00325186606628093

Finally, the last thing we'll attempt to do is to understand how our uncertainly (standard deviation) 
depends on the n.  So far, all of our calculations have used n = 10e3.  Now we'll determine the standard 
deviation for values of n that range from 100 to 10e3.  Again, this block of code could take some time 
to complete.  It took my laptop about 5 minutes...
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Below we plot the uncertainty in the numerical integral estimation as a function of n  (the number of 
trials in the Monte Carlo simulation).  As expected, the uncertainty decreases as the number of trials 
increases.  The sigma values are proportional to 1/sqrt(n).
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To get a better appreciation of the dependence of sigma on n, below we plot sigma as a function of 
1/sqrt(n) and observe the linear relationship between the two.  Beautiful!  All of this generated from 
uniformly distributed random numbers!  Take a moment to reflect on what we've accomplished.  We've 
used Monte Carlo simulations to study the behaviour of Monte Carlo simulations!  The objective of a 
Monte Carlo calculation is always to study the characteristics of some system (often a physical system) 
by simulating data using random numbers.
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